
An Overview

 Software Applications – What Are they?
 enterprise software

 accounting software

 office suites

 graphics software

 media players

 Databases

 Graphical user interfaces

 Web applications or applications that, on server side, communicate
with clients via web protocols such as:
 HTTP/HTTPS

 WSDL

 SOAP

 Applications that employ technologies such as:
 Ajax

 CSS

 ASP.Net

 JavaScript

 Java EE

 Software Applications – What Are they?
 enterprise software

 accounting software

 office suites

 graphics software

 media players

 Databases

 Graphical user interfaces

 Web applications or applications that, on server side, communicate
with clients via web protocols such as:
 HTTP/HTTPS

 WSDL

 SOAP

 Applications that employ technologies such as:
 Ajax

 CSS

 ASP.Net

 JavaScript

 Java EE

 Software application development suffers
from a host of issues, including, but not
limited to :
 Requirements churn

 Scope creep

 Tight to near impossible deadlines

 Insufficient resources at times – (far too often)

 Increasing functional complexity

 Requirement timeliness

 Requirement ambiguity

 Requirement Error

 Requirement incompleteness

 Research into the domain of software

development shows that:

 Requirements gathering, analysis and

architectural design accounts for between 60%

and 70% of all defects introduced into a software

product (from studies conducted by Kirova)

 Coding accounts for 30% to 40% of defects

discovered in software products (Kirova)

 Up to 80% of all software development time is

spent on locating and correcting defects (includes

test)(NIST 2002)

Attempts have been made to eliminate or

remove error early in the development

lifecycle:

 Fagan’s review process has shown under

experimental conditions that it is capable of

removing 34% of seeded error

 Modelling techniques under similar experimental

conditions and with the same errors as seeded in

Fagan experiments have shown that the error

removal rate was 90%

 Traditional testing is challenged by four
compounding problems:
 Time and labour intensiveness in handcrafting

tests

 Questionable test quality where other than
formal techniques are used for test derivation

 Time and resource intensiveness of manually
executing/re-executing tests or automating tests
via scripting

 Pesticide Paradox (Beizer) – Tests become stale
quickly

 At TestOptimal we believe the answer is test
automation through Model Based Testing

Model Based Testing ensures that there is a

very tight coupling between the generated

test sequences and the originating

requirements

Models are an abstraction or simplification

of the behavior of the application to be

tested focused to resolving a particular

issue(s)

Many modeling approaches are available

 There are very many modeling techniques

that may be applied to testing software,

these include:
 Finite State Machines

 Control Flow Graphs

 Binary Search Graphs

 Truth Tables

 Classification Trees

 Decision Tables

 Equivalence Classes

 Data Flow Models

 Entity Relationship Diagrams

 Message Sequence Charts

Many More Besides

Finite State Machine

Control Flow Graph

Cyclomatic Complexity

Calculation – Tells us we

Have 42 unique paths through

this graph so at least 42

Test Cases

 If we could harness the potential of model

based testing with some form of automation

then testing would be in a more powerful

place to deal with the issues presented by

advanced and advancing Software

Applications.

Generating models in a machine readable

and executable format gives rise to the

potential for comprehensive test automation

on a massive scale

One Model Based Testing architecture - is

Offline with Oracle:

On-The-Fly Architecture

 Model Based Testing requires generating models in
machine readable format

 A few frameworks exist to support model based
testing:
 Nmodel – C#, .Net environment, Finite State Machine

approach – heavy on coding, not easily assimilated into
test teams

 Spec. Explorer – Integral to Visual Studio 2010,.Net,
Finite State Machine approach (not yet a practical
solution look for it into the future)

 ConformIQ from Qtronic (Eclipse® based tool to
automate the design of functional tests for software and
systems)

 TestOptimal – browser and Eclipse® based, XML style
scripting language supported by built inJava, C#.Net,
Selenium and SQL methods, Finite State Machine
approach – low on coding high on output

 Regardless of which approach or framework

you adopt Model Based Testing requires some

unique skill sets:

 Understanding of Finite State Machines as a form

of formal requirements modelling and test

derivation – this is fundamental

 Ability to abstract detail away without removing

the substance of the problem

 Ability to design and code – models consume both

design and code

 Generating models doesn’t come for free
 Modelling/coding commences with requirements

analysis, continues during and keeps pace with
application development and launches almost
immediately upon build delivery

 While generating models/code no “tests” appear,
traditional handcrafting looks to lead in this regard (a
big mistake to believe this)

 When models are complete the number of tests that
can be generated are only limited by the constraints
we place on the model

 The speed of generating (and executing tests when
coupled to a framework) is phenomenal

 Ability to update tests is rapid by comparison to
traditional means (typically under an hour for full
regeneration – ready for re-execution)

 You will quickly come to appreciate that:

 Model Based Testing is more about software
development for testing than about individual test
creation. This is important to recognise.

 You cannot view model based testing as just another
exercise in testing. You must manage and control
your activities and deliverables just as you would
manage or control software development and
artefacts for in deed you are developing software.

 You must not reconcile model based test output with
numbers of test cases you may however reconcil
requirements covered, states covered, transitions
covered

 Management needs to be on-board and supportive,
without this support only failure awaits

 To setup a Model Based Testing environment

Think about:

 The people

 The skills to service the framework you adopt

 The projects

 The circumstances that you deploy Model Based

Testing On

 Again this is not a standard testing exercise, this

is a software development exercise for the

purpose of highly adaptive, highly responsive and

exceptionally comprehensive testing

 To start building models to create your Model

Based Testing you start with Finite State

Machine representation of your application

area of focus

 Finite State Machines (FSM) what are they?:

 In FSM representation we consider the Application

Under Test (AUT) in terms of its States (however we

decide to visualize them) and those actions (triggers

– the transitions) that cause State change

 Consider a State as an outward representation of an

AUT’s behavior – depicted in the case of a web

application for example by a page or tab of features

within these pages

 The “F” (Finite) in FSM, merely reflects the limited

(non-infinite) number of States that represent the

totality of the AUT or in the case of a web application

perhaps the limited number of pages/tabs/screens

 A few simple rules to follow to construct an
FSM for an application

 Take one view (or perspective) of the
application to start

 Each page/screen of the application can be
viewed or equated with a State/sub-state of
the application

 Every action that alters or changes the page
of the application in a way that you care
about results in a State change and each such
action or trigger/event can be equated with
a Transition for the purposes of the model.

Finite State Machine

 Begin Modeling from a purely abstract point of
view:

 Early in model development ignore the AUT (unless it
is legacy)– you DON’T need to have access to the
actual AUT, you can build models directly from
requirements

 Do NOT build one large amorphous model to represent
your application. To do so is to invite disaster and it
breaks with the concept of abstraction

 Break down the application by logically grouping
closely related or interdependent features and model
those

 Don’t be afraid to have small models, they best
describe discrete behavior – small IS good. Many
small IS better

 Abstract models:
 Are purely a representation of the AUT derived

from requirements (or other knowledge)

 Utilize “abstract” names within the model code
(script) to represent the actual AUT elements
that you wish to interact with

 Never use hard coded values for any parameters
within your models, always parameterize these
values out and retain actual values in external
files

 Make sure requirements are traced through to
the individual models you build, you need to
know what your models are covering when
executing

 Concretizing models is the next step. At
some point you will gain access to the AUT,
at this point you are in a position to begin
concretizing your models which means:
 You can begin to derive “concrete” or real values

for each and every element implemented within
the AUT that you care about

 You associate the “concrete” values with the
“abstract” values you incorporated in your
models to this time

 You provide your models with a real path to the
AUT such that your models can reach and
interact with the AUT

We need to capture or integrate our model

within a modelling framework that will

permit the model to:

 exist in a machine readable format

 provide for use of graph traversal algorithms to

generate test sequences

 Provide an execution and reconciliation bench

TestOptimal from TestOptimal LLC

www.testoptimal.com

http://www.testoptimal.com/

Build models within IDE

Interface to and

work with

external files;

e.g. external

param. fles

Directly interface

With AUT

via Selenium

 Example of a parameterized model script

 Abstract value

Concrete value

 In order to acquire the identifiers for the

AUT elements that must necessarily deal

with you will require to use FireFox and the

following Add-ons:

 DOM Inspector

 FireBug

 FireXpath

 Xpather

 Xpath Checker

 UI Spy

Additional support to make modelling of

applications possible is required in the form

of:

 Explicitly created/declared element ids. No

non-specific element id’s, for example id_255

or a3425h9989098876788 etc. This sort of

non-descriptive element ID tends to cause

problems:

 Everything you need to interact with, identify,
provide input for, read out from needs to have
an identifier, this may be at least one of the
following:
 Explicit handle

 Windows automation ID

 Element ID

 Xpath

 Attribute

 Link (href)

 Without at least a stable form of one of the
latter for each of your elements or attributes of
interest there is no way to programatically work
with the AUT

 Repurposing is one of the great benefits of
modeling especially from within an
framework such as TestOptimal: All models
can with minimal effort be employed for:
 Load testing. You can imagine that launching a

model on multiple threads can provide a
constant load to your app or web server

 Stress testing by utilising for example
“searching”, updating, purchasing, copying
models (as many as you have created) to push
your:

 Db server

 App server

Questions?

