MODEL BASED
TESTING

OF SOFTWARE APPLICATIONS

An Overview

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

@ Software Applications - What Are they?
enterprise software
accounting software
office suites
graphics software
media players
Databases
Graphical user interfaces

Web applications or applications that, on server side, communicate
with clients via web protocols such as:
HTTP/HTTPS
WSDL
SOAP
Applications that employ technologies such as:
Ajax
CSS
ASP.Net
JavaScript
Java EE

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

@ Software Applications - What Are they?
enterprise software S
accounting software @
office suites b\
graphics software O
media players %)
Databases K
Graphical user interfaces @

Web applications or appliC@fons that, on server side, communicate
with clients via web prc@ols such as:

HTTP/HTTPS
WSDL . c';\'
SOAP AN

Applications th Qemploy technologies such as:
Ajax ,Qé
CSS
ASP.Net

JavaScript
Java EE

MODEL BASED TESTING OF
SOF TWARE APPLICATIONS

® Software application development suffers
from a host of issues, including, but not
limited to :

Requirements churn

Scope creep

Tight to near impossible deadlines

Insufficient resources at times - (far too often)
Increasing functional complexity

Requirement timeliness

Requirement ambiguity

Requirement Error

Requirement incompleteness

MODEL BASED TESTING OF
SOF TWARE APPLICATIONS

® Research into the domain of software
development shows that:

Requirements gathering, analysis and
architectural design accounts for between 60%
and 70% of all defects introduced into a software
prod UCT (from studies conducted by Kirova)

Coding accounts for 30% to 40% of defects
discovered in software products (kirova)

Up to 80% of all software development time is

spent on locating and correcting defects (includes
test)(NIST 2002)

MODEL BASED TESTING OF
SOF TWARE APPLICATIONS

® Attempts have been made to eliminate or
remove error early in the development
lifecycle:

Fagan’s review process has shown under
experimental conditions that it is capable of
removing 34% of seeded error

Modelling techniques under similar experimental
conditions and with the same errors as seeded in
Fagan experiments have shown that the error
removal rate was 90%

MODEL BASED TESTING OF
SOF TWARE APPLICATIONS

® Traditional testing is challenged by four
compounding problems:

Time and labour intensiveness in handcrafting
tests

Questionable test quality where other than
formal techniques are used for test derivation

Time and resource intensiveness of manually
executing/re-executing tests or automating tests
via scripting
Pesticide Paradox eeizer - Tests become stale
quickly
@ At TestOptimal we believe the answer is test
automation through Model Based Testing

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

® Model Based Testing ensures that there is a
very tight coupling between the generated
test sequences and the originating
requirements

® Models are an abstraction or simplification
of the behavior of the application to be
tested focused to resolving a particular
issue(s)

® Many modeling approaches are available

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

® There are very many modeling techniques

that may be applied to testing software,
these include:

Finite State Machines

Control Flow Graphs

Binary Search Graphs

Truth Tables Many More Besides

Classification Trees

Decision Tables

Equivalence Classes

Data Flow Models

Entity Relationship Diagrams

Message Sequence Charts

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

Button enabled

1
Enter Invalid

Login Details \
and Press OK button

D
Logged Off

2 49 50 52
fle > Log Gn 45 Ghegk Uncheck o Golumn
Close uprocaes” "Process’
by 300 plxels) Checkbox Checkbox

46
Help > Abaut

Enter Valid Login Details

6
File > Log Off
and Press OK button

4
Launch APP
application

47
Cancal
buttan

F
Payment Summary
Tab

(Default view is all rows are collapsed,
all “Process” checkboxes are unchecked,

screen is open (o full screen, and rows are sorted by
—- conirs name in ascending order)

Exit button
(no data saved)

24
dit > Configuration
(Adminisirator)
25
13 xit bution
Exit () button G (no data saved) 26
Enors OK bution
T (data saved)
14 (Dsfault view is all rows are 48
File > Exit collapsed) dit > Configuration
(Standard User)
16 M
Save “Payment
andClose 17 % Processing
Button - pouble Click View Errors button Complste
onEmorRow 99 Screen
Save
51 and Close:
Open other scraens:
In APP

Payment Editing
(Payment Data,
Errer Detalls,
Scanned Image)

15
Save and Next Button.

54
Save and Next Shortcut Kay

Finite State

L
“Payment Are Being
Processed” Screen
(default size 700 pixals x
400 pixels)

39
Salsct All bution

38
Select None button

32
OK button
37
dit > Configuration
36 (Slandard User)
OK button
22 35 (data saved) H
Select Edit > Corfiguraior e
e 23 onfiguration Processing
Tab Select Payment (Administrator) Completed
h Summary Tah 34

K
Configuration
Screen

Machine

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

L No, file nat available

File_Processing Control Flow
raph
|

Vatcherwilt check f
incaming file regularly and w
proc "

other

1 Check for
.CSV file

formats are avai
process the file
AYes, CSV file avallable In the Incoming Directory

T Whign a duplicate
ile is found, file is
“not processed and
© movedto Error
Directory and
 check for another

9 Move to Error
Directory

<l> Cyclomatic Complexity

|| Calculation — Tells us we

T ﬁ\/‘)fl . Have 42 unique paths through
ot this graph so at least 42

Valid Format?,

Test Cases

HYES

rovider Naj
Field Null?

Control Flow Graph

Provider Name
Valid Format?,

KYES

TYES—

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

@ If we could harness the potential of model
based testing with some form of automation
then testing would be in a more powerful
place to deal with the issues presented by
advanced and advancing Software
Applications.

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

® Generating models in a machine readable
and executable format gives rise to the
potential for comprehensive test automation
on a massive scale

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

® One Model Based Testing architecture - is
Offline with Oracle:

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

® On-The-Fly Architecture

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

® Model Based Testing requires generating models in
machine readable format

@ A few frameworks exist to support model based
testing:
Nmodel - C#, .Net environment, Finite State Machine

approach - heavy on coding, not easily assimilated into
test teams

Spec. Explorer - Integral to Visual Studio 2010, .Net,
Finite State Machine approach (not yet a practical
solution look for it into the future)

ConformIQ from Qtronic (Eclipse® based tool to
automate the design of functional tests for software and
systems)

TestOptimal - browser and Eclipse® based, XML style
scripting language supported by built inJava, C#.Net,
Selenium and SQL methods, Finite State Machine
approach - low on coding high on output

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

@ Regardless of which approach or framework
you adopt Model Based Testing requires some
unique skill sets:

Understanding of Finite State Machines as a form
of formal requirements modelling and test
derivation - this is fundamental

Ability to abstract detail away without removing
the substance of the problem

Ability to design and code - models consume both
design and code

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

® Generating models doesn’t come for free

Modelling/coding commences with requirements
analysis, continues during and keeps pace with
application development and launches almost
immediately upon build delivery

While generating models/code no “tests” appear,
traditional handcrafting looks to lead in this regard (a
big mistake to believe this)

When models are complete the nhumber of tests that
can be generated are only limited by the constraints
we place on the model

The speed of generating (and executing tests when
coupled to a framework) is phenomenal

Ability to update tests is rapid by comparison to
traditional means (typically under an hour for full
regeneration - ready for re-execution)

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

® You will quickly come to appreciate that:

Model Based Testing is more about software
development for testing than about individual test
creation. This is important to recognise.

You cannot view model based testing as just another
exercise in testing. You must manage and control
your activities and deliverables just as you would
manage or control software development and
artefacts for in deed you are developing software.

You must not reconcile model based test output with
numbers of test cases you may however reconcil
requirements covered, states covered, transitions
covered

Management needs to be on-board and supportive,
without this support only failure awaits

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

@ To setup a Model Based Testing environment
Think about:
The people
The skills to service the framework you adopt
The projects

The circumstances that you deploy Model Based
Testing On

Again this is not a standard testing exercise, this
is a software development exercise for the
purpose of highly adaptive, highly responsive and
exceptionally comprehensive testing

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

@ To start building models to create your Model
Based Testing you start with Finite State
Machine representation of your application
area of focus

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

@ Finite State Machines (FSM) what are they?:

In FSM representation we consider the Application
Under Test (AUT) in terms of its States (however we
decide to visualize them) and those actions (triggers
- the transitions) that cause State change

Consider a State as an outward representation of an
AUT’s behavior - depicted in the case of a web
application for example by a page or tab of features
within these pages

The “F” (Finite) in FSM, merely reflects the limited
(non-infinite) number of States that represent the
totality of the AUT or in the case of a web application
perhaps the limited number of pages/tabs/screens

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

@ A few simple rules to follow to construct an
FSM for an application

Take one view (or perspective) of the
application to start

Each page/screen of the application can be
viewed or equated with a State/sub-state of
the application

Every action that alters or changes the page
of the application in a way that you care
about results in a State change and each such
action or trigger/event can be equated with
a Transition for the purposes of the model.

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

Button enabled

1
Enter Invalid

Login Details \
and Press OK button

D
Logged Off

2 49 50 52
fle > Log Gn 45 Ghegk Uncheck o Golumn
Close uprocaes” "Process’
by 300 plxels) Checkbox Checkbox

46
Help > Abaut

Enter Valid Login Details

6
File > Log Off
and Press OK button

4
Launch APP
application

47
Cancal
buttan

F
Payment Summary
Tab

(Default view is all rows are collapsed,
all “Process” checkboxes are unchecked,

screen is open (o full screen, and rows are sorted by
—- conirs name in ascending order)

Exit button
(no data saved)

24
dit > Configuration
(Adminisirator)
25
13 xit bution
Exit () button G (no data saved) 26
Enors OK bution
T (data saved)
14 (Dsfault view is all rows are 48
File > Exit collapsed) dit > Configuration
(Standard User)
16 M
Save “Payment
andClose 17 % Processing
Button - pouble Click View Errors button Complste
onEmorRow 99 Screen
Save
51 and Close:
Open other scraens:
In APP

Payment Editing
(Payment Data,
Errer Detalls,
Scanned Image)

15
Save and Next Button.

54
Save and Next Shortcut Kay

Finite State

L
“Payment Are Being
Processed” Screen
(default size 700 pixals x
400 pixels)

39
Salsct All bution

38
Select None button

32
OK button
37
dit > Configuration
36 (Slandard User)
OK button
22 35 (data saved) H
Select Edit > Corfiguraior e
e 23 onfiguration Processing
Tab Select Payment (Administrator) Completed
h Summary Tah 34

K
Configuration
Screen

Machine

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

Q
One “FProces
Checkbaox
Checked, "Prox
Button anabl

53

1

Enter Invalid
Login Datails \

and Press OK button

2 49 5
ile > Log On 45 ppeck Und
: : Close procpcer "Proc
by 300 pixels)
Heldp = About
3 6
Enter Valid Login Details File = Log Off

and Press OK bution

a7 N F

Launch APP =
Cancel application 2 l:'lalhlﬂ.m.l‘lEa"l
button 1

(Default view is all rc

all “Process” checkbo
screen s open 1o full screa
cantré namse in a

File = Log Off

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

® Begin Modeling from a purely abstract point of
view:
Early in model development ignore the AUT (unless it
is legacy)- you DON’T need to have access to the

actual AUT, you can build models directly from
requirements

Do NOT build one large amorphous model to represent
your application. To do so is to invite disaster and it
breaks with the concept of abstraction

Break down the application by logically grouping
closely related or interdependent features and model
those

Don’t be afraid to have small models, they best
describe discrete behavior - small IS good. Many
small IS better

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

@ Abstract models:

Are purely a representation of the AUT derived
from requirements (or other knowledge)

Utilize “abstract” names within the model code
(script) to represent the actual AUT elements
that you wish to interact with

Never use hard coded values for any parameters
within your models, always parameterize these
values out and retain actual values in external
files

Make sure requirements are traced through to
the individual models you build, you need to
know what your models are covering when
executing

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

® Concretizing models is the next step. At
some point you will gain access to the AUT,
at this point you are in a position to begin
concretizing your models which means:
You can begin to derive “concrete” or real values

for each and every element implemented within
the AUT that you care about

You associate the “concrete” values with the
“abstract” values you incorporated in your
models to this time

You provide your models with a real path to the
AUT such that your models can reach and
interact with the AUT

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

@ We need to capture or integrate our model
within a modelling framework that will
permit the model to:

exist in a machine readable format

provide for use of graph traversal algorithms to
generate test sequences

Provide an execution and reconciliation bench

TestOptimal from TestOptimal LLC

http://www.testoptimal.com/

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

WebMET Builder
{Firalax add.anj

Hequirements
Specifications

Build models within IDE

TO IDE Testin ripl

Firalax. IE "] ML, v, Java, VBSVEA

Salarl, PDA C#, Pylhan, Parl, TTCH
» Application Modeling

m » Full Intergcii*.rq Debug l

“Ecigee = Model Animation .

neeans [*C 5 Test Case Generation o |© SiberTodls Directly interface
Load/Stress Testing J+—< Ratcnal Robar With AUT

{L # Performance Testing B STl via Selenium
» Defect Severity Levels
Junit ——= . Universal Integration '

» Data-Driven Testing Satanhr App Under Test
» Pairwise Testing). — Wabiajax, FlashiFlax. Java,

P » Requirements Tracking o roof| " =7 7 B

mesr, [—*C » Statistical Analysis
» App/Req Coverage Stat =S
» Cross-browser Testing ! ___Q_’
» XML Scripting -
Cron/Bateh (DB, Files \
T T T \ Interface to and
N ,b‘..-.-_-- work with
GraphML | |GraphXML XM N external files;

e.g. external
param. fles

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

State

) Model Name GroupPractice
3 Description™ Testing Register Group Practice Page in PWP.
* trane RegisterGroupPractice —
= state GroupPracticeODoc
Model Version 10
Model Build Num
= state GroupPractice1Doc AUT Version |
® trans AddDocCReject — GroupPracticelDoc . Backup Date 2009.09.02 at 10:50:19 £
* trans RegisterReject — GroupPracticelDoc 3 - r—'—‘——
= A ot e ol e — Graph Ornientation’ Top->Bottom
= :be- Group&*ncbcoN(:oc oo State Cha rt Color I l=)
trans AddDOCACCEpt — GroupPrac nd Submodel™ | |
* trane RemoveDoc - GroupPracticeNDoc e 2 Niz
* trans RefreshDoc — GroupPracticeNDoc App URL [hnp Hwin2008erx.dmz ddihealth. com
* tracs RegisterAccept — Registeredl
- Registeredi Trans Log Size |200
#l stace HomeNotLoggedin2 Num History Stats |5
¥ state Accountinactive ™—
state AdminLandingPage Phugin Ism 1=
i atate RegisterUser Java Class [generate
#l state RagisterGPODoOC
state RegrsterGPNDOC Browser Type IExplore 7 |~|
siate Regesterad2 DAl AR fenn -

Transitions

TestOptimal IDE

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

® Example of a parameterized model script

<state id="NotLloggedIn">
<script type="onentry"/>

<script tvpe="onexit"/> Abstract Value

<transition event="UserLogin">»

<script type="prep"/>
<gcript type="action">»
<log message="Logging into Hom

= z ogin"/ >
<action code="Stype('SgetDatd 'ElementNammgNa_me agcator') !y 'SgetDALa (' GoodLoginDS', 'UserName')')"/>
<action code="Stype ('SgetData'Elementitmeas BasawerdtTCator') ', '$getData('Goo;grn-DS-H—l-Pessmd‘:' '.';:r
<action code="S$setCheckBox('$getData('ElementNageADS', 'Terms0fUseCheckBox') ', "true') "/>

<action code="Sclick('égetData('ElementNamesDS'} 'I\ginButton')')"/>

<action code="£sleep('fgetData('TextD3', '5leep)ime’)
<action code="%sleep('%getData('TextD5’, 'Sleepfime') ")

¢/seript> Concrete value
<script type="verify"/>
</tranzition»
</states X @ |+ PWPDS [Compatibility Mode] - Microsoft Exc

Page Layout Formulas Data Review View

- | = General | |[EcCo
AN ==y 5 T

L $ - % + EFo
..... H-A- EEEEE B o 5 ce

Clipboard = Font) Alignment w Mumber ¥

K1 - \fw| UserMameLocator
J }‘a K L
1 MMAUpdate UserNameLocator PasswordLocator T
2 xpath=id({\'updateButton\') xpath=id(\'LoginUsername\') xpath=id{\'LoginPassword\’} x
3

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

@ In order to acquire the identifiers for the
AUT elements that must necessarily deal
with you will require to use FireFox and the

following Add-ons:
DOM Inspector
FireBug
FireXpath
Xpather
Xpath Checker
Ul Spy

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

@ Additional support to make modelling of
applications possible is required in the form
of:

Explicitly created/declared element ids. No
non-specific element id’s, for example id_255
or a3425h9989098876788 etc. This sort of
non-descriptive element ID tends to cause
problems:

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

@ Everything you need to interact with, identify,
provide input for, read out from needs to have
an identifier, this may be at least one of the
following:

Explicit handle
Windows automation ID
Element ID

Xpath

Attribute

Link (href)

@ Without at least a stable form of one of the
latter for each of your elements or attributes of

interest there is no way to programatically work
with the AUT

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

@ Repurposing is one of the great benefits of
modeling especially from within an
framework such as TestOptimal: All models
can with minimal effort be employed for:

Load testing. You can imagine that launching a

model on multiple threads can provide a
constant load to your app or web server

Stress testing by utilising for example
“searching”, updating, purchasing, copying
models (as many as you have created) to push
your:

Db server

App server

MODEL BASED TESTING OF
SOFTWARE APPLICATIONS

® Questions?

