
An Overview

 Software Applications – What Are they?
 enterprise software

 accounting software

 office suites

 graphics software

 media players

 Databases

 Graphical user interfaces

 Web applications or applications that, on server side, communicate
with clients via web protocols such as:
 HTTP/HTTPS

 WSDL

 SOAP

 Applications that employ technologies such as:
 Ajax

 CSS

 ASP.Net

 JavaScript

 Java EE

 Software Applications – What Are they?
 enterprise software

 accounting software

 office suites

 graphics software

 media players

 Databases

 Graphical user interfaces

 Web applications or applications that, on server side, communicate
with clients via web protocols such as:
 HTTP/HTTPS

 WSDL

 SOAP

 Applications that employ technologies such as:
 Ajax

 CSS

 ASP.Net

 JavaScript

 Java EE

 Software application development suffers
from a host of issues, including, but not
limited to :
 Requirements churn

 Scope creep

 Tight to near impossible deadlines

 Insufficient resources at times – (far too often)

 Increasing functional complexity

 Requirement timeliness

 Requirement ambiguity

 Requirement Error

 Requirement incompleteness

 Research into the domain of software

development shows that:

 Requirements gathering, analysis and

architectural design accounts for between 60%

and 70% of all defects introduced into a software

product (from studies conducted by Kirova)

 Coding accounts for 30% to 40% of defects

discovered in software products (Kirova)

 Up to 80% of all software development time is

spent on locating and correcting defects (includes

test)(NIST 2002)

Attempts have been made to eliminate or

remove error early in the development

lifecycle:

 Fagan’s review process has shown under

experimental conditions that it is capable of

removing 34% of seeded error

 Modelling techniques under similar experimental

conditions and with the same errors as seeded in

Fagan experiments have shown that the error

removal rate was 90%

 Traditional testing is challenged by four
compounding problems:
 Time and labour intensiveness in handcrafting

tests

 Questionable test quality where other than
formal techniques are used for test derivation

 Time and resource intensiveness of manually
executing/re-executing tests or automating tests
via scripting

 Pesticide Paradox (Beizer) – Tests become stale
quickly

 At TestOptimal we believe the answer is test
automation through Model Based Testing

Model Based Testing ensures that there is a

very tight coupling between the generated

test sequences and the originating

requirements

Models are an abstraction or simplification

of the behavior of the application to be

tested focused to resolving a particular

issue(s)

Many modeling approaches are available

 There are very many modeling techniques

that may be applied to testing software,

these include:
 Finite State Machines

 Control Flow Graphs

 Binary Search Graphs

 Truth Tables

 Classification Trees

 Decision Tables

 Equivalence Classes

 Data Flow Models

 Entity Relationship Diagrams

 Message Sequence Charts

Many More Besides

Finite State Machine

Control Flow Graph

Cyclomatic Complexity

Calculation – Tells us we

Have 42 unique paths through

this graph so at least 42

Test Cases

 If we could harness the potential of model

based testing with some form of automation

then testing would be in a more powerful

place to deal with the issues presented by

advanced and advancing Software

Applications.

Generating models in a machine readable

and executable format gives rise to the

potential for comprehensive test automation

on a massive scale

One Model Based Testing architecture - is

Offline with Oracle:

On-The-Fly Architecture

 Model Based Testing requires generating models in
machine readable format

 A few frameworks exist to support model based
testing:
 Nmodel – C#, .Net environment, Finite State Machine

approach – heavy on coding, not easily assimilated into
test teams

 Spec. Explorer – Integral to Visual Studio 2010,.Net,
Finite State Machine approach (not yet a practical
solution look for it into the future)

 ConformIQ from Qtronic (Eclipse® based tool to
automate the design of functional tests for software and
systems)

 TestOptimal – browser and Eclipse® based, XML style
scripting language supported by built inJava, C#.Net,
Selenium and SQL methods, Finite State Machine
approach – low on coding high on output

 Regardless of which approach or framework

you adopt Model Based Testing requires some

unique skill sets:

 Understanding of Finite State Machines as a form

of formal requirements modelling and test

derivation – this is fundamental

 Ability to abstract detail away without removing

the substance of the problem

 Ability to design and code – models consume both

design and code

 Generating models doesn’t come for free
 Modelling/coding commences with requirements

analysis, continues during and keeps pace with
application development and launches almost
immediately upon build delivery

 While generating models/code no “tests” appear,
traditional handcrafting looks to lead in this regard (a
big mistake to believe this)

 When models are complete the number of tests that
can be generated are only limited by the constraints
we place on the model

 The speed of generating (and executing tests when
coupled to a framework) is phenomenal

 Ability to update tests is rapid by comparison to
traditional means (typically under an hour for full
regeneration – ready for re-execution)

 You will quickly come to appreciate that:

 Model Based Testing is more about software
development for testing than about individual test
creation. This is important to recognise.

 You cannot view model based testing as just another
exercise in testing. You must manage and control
your activities and deliverables just as you would
manage or control software development and
artefacts for in deed you are developing software.

 You must not reconcile model based test output with
numbers of test cases you may however reconcil
requirements covered, states covered, transitions
covered

 Management needs to be on-board and supportive,
without this support only failure awaits

 To setup a Model Based Testing environment

Think about:

 The people

 The skills to service the framework you adopt

 The projects

 The circumstances that you deploy Model Based

Testing On

 Again this is not a standard testing exercise, this

is a software development exercise for the

purpose of highly adaptive, highly responsive and

exceptionally comprehensive testing

 To start building models to create your Model

Based Testing you start with Finite State

Machine representation of your application

area of focus

 Finite State Machines (FSM) what are they?:

 In FSM representation we consider the Application

Under Test (AUT) in terms of its States (however we

decide to visualize them) and those actions (triggers

– the transitions) that cause State change

 Consider a State as an outward representation of an

AUT’s behavior – depicted in the case of a web

application for example by a page or tab of features

within these pages

 The “F” (Finite) in FSM, merely reflects the limited

(non-infinite) number of States that represent the

totality of the AUT or in the case of a web application

perhaps the limited number of pages/tabs/screens

 A few simple rules to follow to construct an
FSM for an application

 Take one view (or perspective) of the
application to start

 Each page/screen of the application can be
viewed or equated with a State/sub-state of
the application

 Every action that alters or changes the page
of the application in a way that you care
about results in a State change and each such
action or trigger/event can be equated with
a Transition for the purposes of the model.

Finite State Machine

 Begin Modeling from a purely abstract point of
view:

 Early in model development ignore the AUT (unless it
is legacy)– you DON’T need to have access to the
actual AUT, you can build models directly from
requirements

 Do NOT build one large amorphous model to represent
your application. To do so is to invite disaster and it
breaks with the concept of abstraction

 Break down the application by logically grouping
closely related or interdependent features and model
those

 Don’t be afraid to have small models, they best
describe discrete behavior – small IS good. Many
small IS better

 Abstract models:
 Are purely a representation of the AUT derived

from requirements (or other knowledge)

 Utilize “abstract” names within the model code
(script) to represent the actual AUT elements
that you wish to interact with

 Never use hard coded values for any parameters
within your models, always parameterize these
values out and retain actual values in external
files

 Make sure requirements are traced through to
the individual models you build, you need to
know what your models are covering when
executing

 Concretizing models is the next step. At
some point you will gain access to the AUT,
at this point you are in a position to begin
concretizing your models which means:
 You can begin to derive “concrete” or real values

for each and every element implemented within
the AUT that you care about

 You associate the “concrete” values with the
“abstract” values you incorporated in your
models to this time

 You provide your models with a real path to the
AUT such that your models can reach and
interact with the AUT

We need to capture or integrate our model

within a modelling framework that will

permit the model to:

 exist in a machine readable format

 provide for use of graph traversal algorithms to

generate test sequences

 Provide an execution and reconciliation bench

TestOptimal from TestOptimal LLC

www.testoptimal.com

http://www.testoptimal.com/

Build models within IDE

Interface to and

work with

external files;

e.g. external

param. fles

Directly interface

With AUT

via Selenium

 Example of a parameterized model script

 Abstract value

Concrete value

 In order to acquire the identifiers for the

AUT elements that must necessarily deal

with you will require to use FireFox and the

following Add-ons:

 DOM Inspector

 FireBug

 FireXpath

 Xpather

 Xpath Checker

 UI Spy

Additional support to make modelling of

applications possible is required in the form

of:

 Explicitly created/declared element ids. No

non-specific element id’s, for example id_255

or a3425h9989098876788 etc. This sort of

non-descriptive element ID tends to cause

problems:

 Everything you need to interact with, identify,
provide input for, read out from needs to have
an identifier, this may be at least one of the
following:
 Explicit handle

 Windows automation ID

 Element ID

 Xpath

 Attribute

 Link (href)

 Without at least a stable form of one of the
latter for each of your elements or attributes of
interest there is no way to programatically work
with the AUT

 Repurposing is one of the great benefits of
modeling especially from within an
framework such as TestOptimal: All models
can with minimal effort be employed for:
 Load testing. You can imagine that launching a

model on multiple threads can provide a
constant load to your app or web server

 Stress testing by utilising for example
“searching”, updating, purchasing, copying
models (as many as you have created) to push
your:

 Db server

 App server

Questions?

